HomeTravelDistance and destination of retail meat alter multidrug resistant contamination in the...

Distance and destination of retail meat alter multidrug resistant contamination in the United States food system – Scientific Reports

Date:

Related stories

spot_imgspot_img

  • Chousalkar, K. K. & Willson, N.-L. Nontyphoidal Salmonella infections acquired from poultry. Curr. Opin. Infect. Dis. 35, 431–435 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Silva, J. et al. Campylobacter spp. as a foodborne pathogen: A review. Front. Microbiol. 2, 200 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scallan, E. et al. Foodborne illness acquired in the United States-Major pathogens. Emerg. Infect. Dis. 17, 7–15 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Painter, J. A. et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 19, 407–415 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beshearse, E. et al. Attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, Unites States. Emerg. Infect. Dis. 27, 182–195 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collier, S. A. et al. Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg. Infect. Dis. 27, 140–149 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crum-Cianflone, N. F. Salmonellosis and the gastrointestinal tract: More than just peanut butter. Curr. Gastroenterol. Rep. 10, 424–431 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. A historical review on antibiotic resistance of foodborne campylobacter. Front. Microbiol. 10, 1509 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solomon, S. L., & Oliver, K. B. Antibiotic Resistance Threats in the United States, 2019. (2019). https://doi.org/10.15620/cdc:82532

  • Magiorakos, A.-P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Innes, G. K. et al. External societal costs of antimicrobial resistance in humans attributable to antimicrobial use in livestock. Annu. Rev. Public Health 41, 141–157 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heredia, N. & García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 4, 250–255 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haley, M. USDA ERS: Livestock, Dairy, and Poultry Outlook: December 2019. ERS Livestock, Dairy, Poult. Outlook (2019).

  • National Chicken Council. Per Capita Consumption of Poultry and Livestock, 1960 to Forecast 2020, in Pounds. (2021).

  • Weber, C. L. & Matthews, H. S. Food-miles and the relative climate impacts of food choices in the United States. Environ. Sci. Technol. 42, 3508–3513 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lekshmi, M., Ammini, P., Kumar, S. & Varela, M. F. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms 5, 11 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Österberg, J. et al. Antibiotic resistance in Escherichia coli from pigs in organic and conventional farming in four european countries. PLoS ONE 11, e0157049 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agga, G. E. et al. Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLoS ONE 14, e0212510 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nhung, N. T., Chansiripornchai, N. & Carrique-Mas, J. J. Antimicrobial resistance in bacterial poultry pathogens: A review. Front. Vet. Sci. 4, 126 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouger, A., Tresse, O. & Zagorec, M. Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms 5, 50 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacholewicz, E., Swart, A., Wagenaar, J. A., Lipman, L. J. A. & Havelaar, A. H. Explanatory variables associated with campylobacter and Escherichia coli concentrations on broiler chicken carcasses during processing in two slaughterhouses. J. Food Prot. 79, 2038–2047 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wheatley, P., Giotis, E. S. & McKevitt, A. I. Effects of slaughtering operations on carcass contamination in an Irish pork production plant. Ir. Vet. J. 67, 1–6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saide-Albornoz, J. J., LynnKnipe, C., Murano, E. A. & Beran, G. W. Contamination of pork carcasses during slaughter, fabrication, and chilled storage. J. Food Prot. 58, 993–997 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Tadesse, D. A. et al. Prevalence and antimicrobial resistance profile of Campylobacter spp. isolated from conventional and antimicrobial-free swine production systems from different U.S. regions. Foodborne Pathog. Dis. 8, 367–374 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vihavainen, E. et al. Role of broiler carcasses and processing plant air in contamination of modified-atmosphere-packaged broiler products with psychrotrophic lactic acid bacteria. Appl. Environ. Microbiol. 73, 1136–1145 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hultman, J., Rahkila, R., Ali, J., Rousu, J. & Björkroth, K. J. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl. Environ. Microbiol. 81, 7088–7097 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. Biofilms and meat safety: A mini-review. J. Food Protect. 82, 120–127 (2019).

    Article 

    Google Scholar
     

  • Giaouris, E. et al. Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 97, 298–309 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Davis, G. S. et al. Antibiotic-resistant Escherichia coli from retail poultry meat with different antibiotic use claims. BMC Microbiol. 18, 1–7 (2018).

    Article 

    Google Scholar
     

  • Johnson, J. R., Kuskowski, M. A., Smith, K., O’Bryan, T. T. & Tatini, S. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J. Infect. Dis. 191, 1040–1049 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miranda, J. M. et al. Antimicrobial resistance in Enterococcus spp. strains isolated from organic chicken, conventional chicken, and turkey meat: A comparative survey. J. Food Prot. 70, 1021–1024 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colavecchio, A., Cadieux, B., Lo, A. & Goodridge, L. D. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family: A review. Front. Microbiol. 8, 1108 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zansky, S. et al. From the centers for disease control and prevention. Outbreak of multi-drug resistant Salmonella Newport-United States, January–April 2002. JAMA 288, 951–953 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Innes, G. K. et al. Contamination of retail meat samples with multidrug-resistant organisms in relation to organic and conventional production and processing: A cross-sectional analysis of data from the United States National Antimicrobial Resistance Monitoring System, 2012. Environ. Health Perspect. 129, 57004 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tesson, V. et al. A systematic review of beef meat quantitative microbial risk assessment models. Int. J. Environ. Res. Public Health 17, 688 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, D. C. et al. Performance of cold chains and modeled growth of Vibrio parahaemolyticus for farmed oysters distributed in the United States and internationally. Int. J. Food Microbiol. 313, 108378 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Food and Drug Administration. Integrated Reports/Summaries|FDA. (2020).

  • United States Department of Agriculture (USDA). Regions: USDA ARS. (2020).

  • FSIS. FSIS Safety and Security Guidelines for the Transportation and Distribution of Meat, Poultry, and Egg Products. (2003).

  • FDA, N. The National Antimicrobial Resistance Monitoring System: Enteric Bacteria Methods, 1–7 (2009).

  • Food and Drug Administration (FDA). Guidance for Industry New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #2.

  • Center for Veterinary Medicine, Food and Drug Administration (FDA). List of Medically Important Antimicrobial Drugs Affected by GFI #213. https://www.fda.gov/animal-veterinary/judicious-use-antimicrobials/list-medically-important-antimicrobial-drugs-affected-gfi-213. Accessed 7 May 2019.

  • Hu, X. S. et al. Estimating animal abundance in ground beef batches assayed with molecular markers. PLoS ONE 7, e34191 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, D. G., Zhao, S., Simjee, S., Wagner, D. D. & McDermott, P. F. Antimicrobial resistance of foodborne pathogens. Microb. Infect. 4, 405–412 (2002).

    Article 
    CAS 

    Google Scholar
     

  • White, D. G. et al. The isolation of antibiotic-resistant salmonella from retail ground meats. N. Engl. J. Med. 345, 1147–1154 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, F., Lestari, S. I., Pu, S. & Ge, B. Prevalence and antimicrobial resistance among Campylobacter spp. in Louisiana retail chickens after the enrofloxacin ban. Foodborne Pathog. Dis. 6, 163–171 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vikram, A. et al. Similar levels of antimicrobial resistance in US food service ground beef products with and without a ‘“raised without antibiotics”’ claim. J. Food Prot. 81, 2007–2018 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • National Agricultural Statistics Service. 2021 Certified Organic Survey. (2022).

  • Wisch, R. F. Table of State Humane Slaughter Laws|Animal Legal & Historical Center. (2006).

  • Federal-State Audit Staff. FSIS Audit of State Meat and Poultry Inspection Programs Fiscal Year 2022 Summary Report. (2023).

  • USDA. How Temperatures Affect Food. (2011). https://doi.org/10.17660/ActaHortic.2018.1192.5.

  • Ashby, B. H. Protecting Perishable Fods During Transport by Truck. (US Department of Agriculture, 1995).

  • Ruiz-Garcia, L., Barreiro, P., Rodriguez-Bermejo, J. & Robla, J. I. Review: Monitoring the intermodal, refrigerated transport of fruit using sensor networks. Span. J. Agric. Res. 5, 142–156 (2007).

    Article 

    Google Scholar
     

  • Giannuzzi, L., Pinotti, A. & Zaritzky, N. Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures. Int. J. Food Microbiol. 39, 101–110 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, L. G. et al. Food safety practices linked with proper refrigerator temperatures in retail delis. Foodborne Pathog. Dis. 15, 300–307 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Food and Drug Administration. Science Board Review of the National Antimicrobial Resistance Monitoring System (Food and Drug Administration, 2017).


    Google Scholar
     

  • Madley-Dowd, P., Hughes, R., Tilling, K. & Heron, J. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 110, 63–73 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • - Never miss a story with notifications

    - Gain full access to our premium content

    - Browse free from up to 5 devices at once

    Latest stories

    spot_img

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here